MathDB
The hardest USAMO inequality problem

Source: USAMO 2000/6

August 11, 2004
USAMOinequalitiesquadraticsvectorcalculusinduction

Problem Statement

Let a1,b1,a2,b2,,an,bna_1, b_1, a_2, b_2, \dots , a_n, b_n be nonnegative real numbers. Prove that i,j=1nmin{aiaj,bibj}i,j=1nmin{aibj,ajbi}. \sum_{i, j = 1}^{n} \min\{a_ia_j, b_ib_j\} \le \sum_{i, j = 1}^{n} \min\{a_ib_j, a_jb_i\}.