MathDB
Problem 9, Fall 2003 , MS and HS

Source:

June 23, 2011
function

Problem Statement

Let ff be a real-valued function of real and positive argument such that f(x)+3xf(1x)=2(x+1)f(x) + 3xf(\tfrac1x) = 2(x + 1) for all real numbers x>0x > 0. Find f(2003)f(2003).