MathDB
Problems
Contests
International Contests
Austrian-Polish
1982 Austrian-Polish Competition
3
\prod \tan \pi/3 (1+3^k/(3^n-1)]=\prod \cot pi/3 ]1- 3^k/(3^n-1)]
\prod \tan \pi/3 (1+3^k/(3^n-1)]=\prod \cot pi/3 ]1- 3^k/(3^n-1)]
Source: Austrian Polish 1982 APMC
April 30, 2020
Product
trigonometry
algebra
Problem Statement
If
n
≥
2
n \ge 2
n
≥
2
is an integer, prove the equality
∏
k
=
1
n
tan
π
3
(
1
+
3
k
3
n
−
1
)
=
∏
k
=
1
n
cot
π
3
(
1
−
3
k
3
n
−
1
)
\prod_{k=1}^n \tan \frac{\pi}{3}\left(1+\frac{3^k}{3^n-1}\right)=\prod_{k=1}^n \cot \frac{\pi}{3}\left(1-\frac{3^k}{3^n-1}\right)
k
=
1
∏
n
tan
3
π
(
1
+
3
n
−
1
3
k
)
=
k
=
1
∏
n
cot
3
π
(
1
−
3
n
−
1
3
k
)
Back to Problems
View on AoPS