MathDB
Romanian National Olympiad 2018 - Grade 9 - problem 2

Source: Romania NMO - 2018

April 12, 2018
inequalities

Problem Statement

Let a,b,c0a,b,c \geq 0 and a+b+c=3.a+b+c=3. Prove that a1+b+b1+c+c1+a11+b+11+c+11+a\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}