Let a1,a2,⋯,an be a sequence of real numbers with a1+a2+⋯+an=0. Define the score S(σ) of a permutation σ=(b1,⋯bn) of (a1,⋯an) to be the minima of the sum (x1−b1)2+⋯+(xn−bn)2 over all real numbers x1≤⋯≤xn.Prove that S(σ) attains the maxima over all permutations σ, if and only if for all 1≤k≤n, b1+b2+⋯+bk≥0.Proposed by Anzo Teh Zhao Yang