MathDB
A tricky #3 algebra

Source: IOM 2021 #3

December 8, 2021
algebra

Problem Statement

Let a1,a2,,ana_1,a_2,\ldots,a_n (n2n\geq 2) be nonnegative real numbers whose sum is n2\frac{n}{2}. For every i=1,,ni=1,\ldots,n define bi=ai+aiai+1+aiai+1ai+2++aiai+1ai+n2+2aiai+1ai+n1b_i=a_i+a_ia_{i+1}+a_ia_{i+1}a_{i+2}+\cdots+ a_ia_{i+1}\cdots a_{i+n-2}+2a_ia_{i+1}\cdots a_{i+n-1} where aj+n=aja_{j+n}=a_j for every jj. Prove that bi1b_i\geq 1 holds for at least one index ii.