MathDB
Factorials

Source: 2020 AMC 12B #6

February 6, 2020
factorial2020 AMC 12BAMCAMC 12AMC 12 B2020 AMC

Problem Statement

For all integers n9,n \geq 9, the value of (n+2)!(n+1)!n!\frac{(n+2)!-(n+1)!}{n!} is always which of the following?
<spanclass=latexbold>(A)</span>a multiple of 4<spanclass=latexbold>(B)</span>a multiple of 10<spanclass=latexbold>(C)</span>a prime number<spanclass=latexbold>(D)</span>a perfect square<spanclass=latexbold>(E)</span>a perfect cube<span class='latex-bold'>(A) </span> \text{a multiple of }4 \qquad <span class='latex-bold'>(B) </span> \text{a multiple of }10 \qquad <span class='latex-bold'>(C) </span> \text{a prime number} \\ <span class='latex-bold'>(D) </span> \text{a perfect square} \qquad <span class='latex-bold'>(E) </span> \text{a perfect cube}