MathDB
D(A) = \underset{d}{max} \underset{i}{min} \delta (P_i, d)

Source: Austrian Polish 1987 APMC

April 30, 2020
combinatorial geometrycombinatoricsgeometrycircleSubsetsminmax

Problem Statement

Let CC be a unit circle and n1n \ge 1 be a fixed integer. For any set AA of nn points P1,...,PnP_1,..., P_n on CC define D(A)=maxdminiδ(Pi,d)D(A) = \underset{d}{max}\, \underset{i}{min}\delta (P_i, d), where dd goes over all diameters of CC and δ(P,)\delta (P, \ell) denotes the distance from point PP to line \ell. Let FnF_n be the family of all such sets AA. Determine Dn=minAFnD(A)D_n = \underset{A\in F_n}{min} D(A) and describe all sets AA with D(A)=DnD(A) = D_n.