MathDB
Number of roots

Source: Moscow Olympiad 2018, Grade 9, P3

July 13, 2018
number theory

Problem Statement

a1,a2,...,aka_1,a_2,...,a_k are positive integers and 1a1+1a2+...+1ak>1\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}>1. Prove that equation [na1]+[na2]+...+[nak]=n[\frac{n}{a_1}]+[\frac{n}{a_2}]+...+[\frac{n}{a_k}]=n has no more than a1a2...aka_1*a_2*...*a_k postivie integer solutions in nn.