MathDB
Solve the lengths

Source: AHSME 1991 problem 19

October 30, 2011
number theoryrelatively primeAMC

Problem Statement

Triangle ABCABC has a right angle at CC, AC=3AC = 3 and BC=4BC = 4. Triangle ABDABD has a right angle at AA and AD=12AD = 12. Points CC and DD are on opposite sides of AB\overline{AB}. The line through DD parallel to AC\overline{AC} meets CB\overline{CB} extended at EE. If DEDB=mn\frac{DE}{DB} = \frac{m}{n}, where mm and nn are relatively prime positive integers, then m+n=m + n = [asy] size(170); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair C=origin, A=(0,3), B=(4,0), D=(7.2,12.6), E=(7.2,0); draw(A--C--B--A--D--B--E--D); label("AA",A,W); label("BB",B,S); label("CC",C,SW); label("DD",D,NE); label("EE",E,SE); [/asy] <spanclass=latexbold>(A)</span> 25<spanclass=latexbold>(B)</span> 128<spanclass=latexbold>(C)</span> 153<spanclass=latexbold>(D)</span> 243<spanclass=latexbold>(E)</span> 256 <span class='latex-bold'>(A)</span>\ 25\qquad<span class='latex-bold'>(B)</span>\ 128\qquad<span class='latex-bold'>(C)</span>\ 153\qquad<span class='latex-bold'>(D)</span>\ 243\qquad<span class='latex-bold'>(E)</span>\ 256