MathDB
Discriminant of Quadratic

Source:

February 11, 2009
quadraticsarithmetic sequencegeometric sequence

Problem Statement

If the discriminant of ax^2\plus{}2bx\plus{}c\equal{}0 is zero, then another true statement about a a, b b, and c c is that: <spanclass=latexbold>(A)</span> they form an arithmetic progression<spanclass=latexbold>(B)</span> they form a geometric progression<spanclass=latexbold>(C)</span> they are unequal<spanclass=latexbold>(D)</span> they are all negative numbers<spanclass=latexbold>(E)</span> only b is negative and a and c are positive <span class='latex-bold'>(A)</span>\ \text{they form an arithmetic progression} \\ <span class='latex-bold'>(B)</span>\ \text{they form a geometric progression} \\ <span class='latex-bold'>(C)</span>\ \text{they are unequal} \\ <span class='latex-bold'>(D)</span>\ \text{they are all negative numbers} \\ <span class='latex-bold'>(E)</span>\ \text{only b is negative and a and c are positive}