MathDB
Miklós Schweitzer 1985, Problem 11

Source: Miklós Schwietzer 1985

September 5, 2016
Miklos Schweitzercollege contestsvectorlinear algebradifferential topology

Problem Statement

Let ξ(E,π,B)(π ⁣:EB)\xi (E, \pi, B)\, (\pi\colon E\rightarrow B) be a real vector bundle of finite rank, and let τE=VξHξ ()\tau_E=V\xi \oplus H\xi\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (*) be the tangent bundle of EE, where Vξ=KerdπV\xi=\mathrm{Ker}\, d\pi is the vertical subbundle of τE\tau_E. Let us denote the projection operators corresponding to the splitting ()(*) by vv and hh. Construct a linear connection \nabla on VξV\xi such that XYYX=v[X,Y]v[hX,hY]\nabla_X\lor Y - \nabla_Y \lor X=v[X,Y] - v[hX,hY] (XX and YY are vector fields on EE, [.,.][.,\, .] is the Lie bracket, and all data are of class C\mathcal C^\infty. [J. Szilasi]