MathDB
another inequality wrapped in sigma and power of -1

Source: Shortlist BMO 2019, A4

November 7, 2020
Inequalityalgebrainequalitiesn-variable inequality

Problem Statement

Let aij,i=1,2,,ma_{ij}, i = 1, 2, \dots, m and j=1,2,,nj = 1, 2, \dots, n be positive real numbers. Prove that i=1m(j=1n1aij)1(j=1n(i=1maij)1)1 \sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1}