MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2019 Balkan MO Shortlist
A4
another inequality wrapped in sigma and power of -1
another inequality wrapped in sigma and power of -1
Source: Shortlist BMO 2019, A4
November 7, 2020
Inequality
algebra
inequalities
n-variable inequality
Problem Statement
Let
a
i
j
,
i
=
1
,
2
,
…
,
m
a_{ij}, i = 1, 2, \dots, m
a
ij
,
i
=
1
,
2
,
…
,
m
and
j
=
1
,
2
,
…
,
n
j = 1, 2, \dots, n
j
=
1
,
2
,
…
,
n
be positive real numbers. Prove that
∑
i
=
1
m
(
∑
j
=
1
n
1
a
i
j
)
−
1
≤
(
∑
j
=
1
n
(
∑
i
=
1
m
a
i
j
)
−
1
)
−
1
\sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1}
i
=
1
∑
m
(
j
=
1
∑
n
a
ij
1
)
−
1
≤
j
=
1
∑
n
(
i
=
1
∑
m
a
ij
)
−
1
−
1
Back to Problems
View on AoPS