MathDB
Equilateral Triangles and Square Root

Source: AMC 12 2008B Problem 24

February 28, 2008
analytic geometryquadraticsAMC

Problem Statement

Let A_0\equal{}(0,0). Distinct points A1,A2, A_1,A_2,\ldots lie on the x x-axis, and distinct points B1,B2, B_1,B_2,\ldots lie on the graph of y\equal{}\sqrt{x}. For every positive integer n n, A_{n\minus{}1}B_nA_n is an equilateral triangle. What is the least n n for which the length A0An100 A_0A_n\ge100? <spanclass=latexbold>(A)</span> 13<spanclass=latexbold>(B)</span> 15<spanclass=latexbold>(C)</span> 17<spanclass=latexbold>(D)</span> 19<spanclass=latexbold>(E)</span> 21 <span class='latex-bold'>(A)</span>\ 13\qquad <span class='latex-bold'>(B)</span>\ 15\qquad <span class='latex-bold'>(C)</span>\ 17\qquad <span class='latex-bold'>(D)</span>\ 19\qquad <span class='latex-bold'>(E)</span>\ 21