Let A_0\equal{}(0,0). Distinct points A1,A2,… lie on the x-axis, and distinct points B1,B2,… lie on the graph of y\equal{}\sqrt{x}. For every positive integer n, A_{n\minus{}1}B_nA_n is an equilateral triangle. What is the least n for which the length A0An≥100?
<spanclass=′latex−bold′>(A)</span>13<spanclass=′latex−bold′>(B)</span>15<spanclass=′latex−bold′>(C)</span>17<spanclass=′latex−bold′>(D)</span>19<spanclass=′latex−bold′>(E)</span>21