MathDB
Sequence with ceiling function

Source:

September 12, 2007
functionceiling functioninductionmodular arithmeticalgebra proposedalgebra

Problem Statement

Given an integer m m, define the sequence {an} \left\{a_{n}\right\} as follows: a_{1}\equal{}\frac{m}{2},\ a_{n\plus{}1}\equal{}a_{n}\left\lceil a_{n}\right\rceil,\textnormal{ if }n\geq 1 Find all values of m m for which a2007 a_{2007} is the first integer appearing in the sequence. Note: For a real number x x, x \left\lceil x\right\rceil is defined as the smallest integer greater or equal to x x. For example, \left\lceil\pi\right\rceil\equal{}4, \left\lceil 2007\right\rceil\equal{}2007.