MathDB
2 Functions

Source: Junior Olympiad of Malaysia Shortlist 2015 C3

July 17, 2015
functioncombinatorics

Problem Statement

Let n2 n\ge 2 be a positive integer and S={1,2,,n} S= \{1,2,\cdots ,n\} . Let two functions f:S{1,1} f:S \rightarrow \{1,-1\} and g:SS g:S \rightarrow S satisfy:
i) f(x)f(y)=f(x+y),x,yS f(x)f(y)=f(x+y) , \forall x,y \in S \\ ii) f(g(x))=f(x),xS f(g(x))=f(x) , \forall x \in S \\ iii) f(x+n)=f(x),xSf(x+n)=f(x) ,\forall x \in S\\ iv) g g is bijective.\\
Find the number of pair of such functions (f,g) (f,g) for every nn.