MathDB
BMT Algebra #5 - Functional Equation

Source:

October 11, 2020
Bmtalgebrafunctionfunctional equation

Problem Statement

Let f:R+R+f:\mathbb{R}^+\to \mathbb{R}^+ be a function such that for all x,yR+,f(x)f(y)=f(xy)+f(xy)x,y \in \mathbb{R}+,\, f(x)f(y)=f(xy)+f\left(\frac{x}{y}\right), where R+\mathbb{R}^+ represents the positive real numbers. Given that f(2)=3f(2)=3, compute the last two digits of f(222020)f\left(2^{2^{2020}}\right).