MathDB
Application of SAS Similarity

Source: AHSME 1964 Problem 29

January 13, 2014
trigonometryratiogeometrysimilar trianglestrig identitiesLaw of CosinesAMC

Problem Statement

In this figure RFS=FDR\angle RFS = \angle FDR, FD=4FD = 4 inches, DR=6DR = 6 inches, FR=5FR = 5 inches, FS=712FS = 7\dfrac{1}{2} inches. The length of RSRS, in inches, is:
[asy] import olympiad; pair F,R,S,D; F=origin; R=5*dir(aCos(9/16)); S=(7.5,0); D=4*dir(aCos(9/16)+aCos(1/8)); label("FF",F,SW);label("RR",R,N); label("SS",S,SE); label("DD",D,W); label("7127\frac{1}{2}",(F+S)/2.5,SE); label("44",midpoint(F--D),SW); label("55",midpoint(F--R),W); label("66",midpoint(D--R),N); draw(F--D--R--F--S--R); markscalefactor=0.1; draw(anglemark(S,F,R)); draw(anglemark(F,D,R)); //Credit to throwaway1489 for the diagram[/asy]

<spanclass=latexbold>(A)</span> undetermined<spanclass=latexbold>(B)</span> 4<spanclass=latexbold>(C)</span> 512<spanclass=latexbold>(D)</span> 6<spanclass=latexbold>(E)</span> 614<span class='latex-bold'>(A)</span>\ \text{undetermined} \qquad <span class='latex-bold'>(B)</span>\ 4\qquad <span class='latex-bold'>(C)</span>\ 5\dfrac{1}{2} \qquad <span class='latex-bold'>(D)</span>\ 6 \qquad <span class='latex-bold'>(E)</span>\ 6\dfrac{1}{4}