MathDB
ISBN code combiatorics

Source: Flanders Math Olympiad 2020 p2

December 24, 2022
combinatoricsnumber theoryDigits

Problem Statement

Every officially published book used to have an ISBN code (International Standard Book Number) which consisted of 1010 symbols. Such code looked like this: a1a2...a9a10a_1a_2 . . . a_9a_{10} with a1,...,a9{0,1,...,9}a_1, . . . , a_9 \in \{0, 1, . . . , 9\} and a10{0,1,...,9,X}a_{10} \in \{0, 1, . . . , 9, X\}. The symbol XX stood for the number 1010. With a valid ISBN code was a1+2a2+...+9a9+10a10a_1 + 2a2 + . . . + 9a_9 + 10a_{10} a multiple of 1111. Prove the following statements. (a) If one symbol is changed in a valid ISBN code, the result is no valid ISBN code. (b) When two different symbols swap places in a valid ISBN code then the result is not a valid ISBN.