MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2007 District Olympiad
1
Romania District Olympiad 2007 - Grade XI
Romania District Olympiad 2007 - Grade XI
Source:
April 10, 2011
limit
induction
real analysis
real analysis unsolved
Problem Statement
Let
a
1
∈
(
0
,
1
)
a_1\in (0,1)
a
1
∈
(
0
,
1
)
and
(
a
n
)
n
≥
1
(a_n)_{n\ge 1}
(
a
n
)
n
≥
1
a sequence of real numbers defined by
a
n
+
1
=
a
n
(
1
−
a
n
2
)
,
(
∀
)
n
≥
1
a_{n+1}=a_n(1-a_n^2),\ (\forall)n\ge 1
a
n
+
1
=
a
n
(
1
−
a
n
2
)
,
(
∀
)
n
≥
1
. Evaluate
lim
n
→
∞
a
n
n
\lim_{n\to \infty} a_n\sqrt{n}
lim
n
→
∞
a
n
n
.
Back to Problems
View on AoPS