MathDB
a_n =sum_{d|n} 1/2^{d+ n/d} 2020 MBMT p44

Source:

February 13, 2022
number theoryMBMT

Problem Statement

Let an=dn12d+nda_n =\sum_{d|n} \frac{1}{2^{d+ \frac{n}{d}}}. In other words, ana_n is the sum of 12d+nd\frac{1}{2^{d+ \frac{n}{d}}} over all divisors dd of nn. Find k=1kakk=1ak=a1+2a2+3a3+....a1+a2+a3+....\frac{\sum_{k=1} ^{\infty}ka_k}{\sum_{k=1}^{\infty} a_k} =\frac{a_1 + 2a_2 + 3a_3 + ....}{a_1 + a_2 + a_3 +....}