MathDB
Romania District Olympiad 2001 - Grade XII

Source:

March 16, 2011
limitintegrationlogarithmscalculusreal analysisreal analysis unsolved

Problem Statement

a)Prove that ln(1+x)x, ()x0\ln(1+x)\le x,\ (\forall)x\ge 0.
b)Let a>0a>0. Prove that:
limnn01xna+xndx=lna+1a\lim_{n\to \infty} n\int_0^1\frac{x^n}{a+x^n}dx=\ln \frac{a+1}{a}
***