MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2001 District Olympiad
4
Romania District Olympiad 2001 - Grade XII
Romania District Olympiad 2001 - Grade XII
Source:
March 16, 2011
limit
integration
logarithms
calculus
real analysis
real analysis unsolved
Problem Statement
a)Prove that
ln
(
1
+
x
)
≤
x
,
(
∀
)
x
≥
0
\ln(1+x)\le x,\ (\forall)x\ge 0
ln
(
1
+
x
)
≤
x
,
(
∀
)
x
≥
0
.b)Let
a
>
0
a>0
a
>
0
. Prove that:
lim
n
→
∞
n
∫
0
1
x
n
a
+
x
n
d
x
=
ln
a
+
1
a
\lim_{n\to \infty} n\int_0^1\frac{x^n}{a+x^n}dx=\ln \frac{a+1}{a}
n
→
∞
lim
n
∫
0
1
a
+
x
n
x
n
d
x
=
ln
a
a
+
1
***
Back to Problems
View on AoPS