MathDB
Miklós Schweitzer 1954- Problem 5

Source:

September 29, 2015
probabilitycollege contests

Problem Statement

5. Let ξ1,ξ2,,ξn,...\xi _{1},\xi _{2},\dots ,\xi _{n},... be independent random variables of uniform distribution in (0,1)(0,1). Show that the distribution of the random variable
ηn=nk=1n(1ξkk)(n=1,2,...)\eta _{n}= \sqrt[]{n}\prod_{k=1}^{n}(1-\frac{\xi _{k}}{k}) (n= 1,2,...)
tends to a limit distribution for nn \to \infty . (P. 6)