MathDB
sum (a_i-b_i) (a_i (sum a_1^2)^{p/2}-b_i (sum b_i^2)^{p/2} >=0

Source: Singapore Open Math Olympiad 2017 2nd Round p2 SMO

March 26, 2020
inequalitiesalgebra

Problem Statement

Let a1,a2,...,an,b1,b2,...,bn,pa_1,a_2,...,a_n,b_1,b_2,...,b_n,p be real numbers with p>1p >- 1. Prove that i=1n(aibi)(ai(a12+a22+...+an2)p/2bi(b12+b22+...+bn2)p/2)0\sum_{i=1}^{n}(a_i-b_i)\left(a_i (a_1^2+a_2^2+...+a_n^2)^{p/2}-b_i (b_1^2+b_2^2+...+b_n^2)^{p/2}\right)\ge 0