MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2016 Harvard-MIT Mathematics Tournament
19
2016 Guts #19
2016 Guts #19
Source:
December 24, 2016
Problem Statement
Let
A
=
lim
n
→
∞
∑
i
=
0
2016
(
−
1
)
i
⋅
(
n
i
)
(
n
i
+
2
)
(
n
i
+
1
)
2
A = \lim_{n \rightarrow \infty} \sum_{i=0}^{2016} (-1)^i \cdot \frac{\binom{n}{i}\binom{n}{i+2}}{\binom{n}{i+1}^2}
A
=
n
→
∞
lim
i
=
0
∑
2016
(
−
1
)
i
⋅
(
i
+
1
n
)
2
(
i
n
)
(
i
+
2
n
)
Find the largest integer less than or equal to
1
A
\frac{1}{A}
A
1
.The following decimal approximation might be useful:
0.6931
<
ln
(
2
)
<
0.6932
0.6931 < \ln(2) < 0.6932
0.6931
<
ln
(
2
)
<
0.6932
, where
ln
\ln
ln
denotes the natural logarithm function.
Back to Problems
View on AoPS