MathDB
n > \sqrt{p}-1 when p | (n^6 -1)

Source: 2014 Saudi Arabia Pre-TST 4.1

September 13, 2020
number theoryinequalitiesdividesdivisible

Problem Statement

Let pp be a prime number and n2n \ge 2 a positive integer, such that p(n61)p | (n^6 -1). Prove that n>p1n > \sqrt{p}-1.