MathDB
Percentages

Source: AHSME 1991 problem 9

October 16, 2011
AMC

Problem Statement

From time t=0t = 0 to time t=1t = 1 a population increased by i%i\%, and from time t=1t = 1 to time t=2t = 2 the population increased by j%j\%. Therefore, from time t=0t = 0 to time t=2t = 2 the population increased by
<spanclass=latexbold>(A)</span> (i+j)%<spanclass=latexbold>(B)</span> ij%<spanclass=latexbold>(C)</span> (i+ij)%<spanclass=latexbold>(D)</span> (i+j+ij100)%<spanclass=latexbold>(E)</span>(i+j+i+j100)% <span class='latex-bold'>(A)</span>\ (i + j)\%\qquad<span class='latex-bold'>(B)</span>\ ij\%\qquad<span class='latex-bold'>(C)</span>\ (i+ij)\%\qquad<span class='latex-bold'>(D)</span>\ \left(i + j + \frac{ij}{100}\right)\%\qquad<span class='latex-bold'>(E)</span>\left( i + j + \frac{i + j}{100}\right)\%