MathDB
2016-2017 Fall OMO Problem 8

Source:

November 16, 2016

Problem Statement

For a positive integer nn, define the nnth triangular number TnT_n to be n(n+1)2\frac{n(n+1)}{2}, and define the nnth square number SnS_n to be n2n^2. Find the value of S62+T63S61+T62S2+T3S1+T2.\sqrt{S_{62}+T_{63}\sqrt{S_{61}+T_{62}\sqrt{\cdots \sqrt{S_2+T_3\sqrt{S_1+T_2}}}}}.
Proposed by Yannick Yao