MathDB
2012 BMT Team 9

Source:

January 5, 2022
permutationcombinatorics

Problem Statement

A permutation of a set is a bijection from the set to itself. For example, if σ\sigma is the permutation 1731 7\mapsto 3, 212 \mapsto 1, and 323 \mapsto 2, and we apply it to the ordered triplet (1,2,3)(1, 2, 3), we get the reordered triplet (3,1,2)(3, 1, 2). Let σ\sigma be a permutation of the set {1,...,n}\{1, ... , n\}. Let θk(m)={m+1form<k1form=kmform>k\theta_k(m) = \begin{cases} m + 1 & \text{for} \,\, m < k\\ 1 & \text{for} \,\, m = k\\ m & \text{for} \,\, m > k\end{cases} Call a finite sequence {ai}i=1j\{a_i\}^{j}_{i=1} a disentanglement of σ\sigma if θaj...θajσ\theta_{a_j} \circ ...\circ \theta_{a_j} \circ \sigma is the identity permutation. For example, when σ=(3,2,1)\sigma = (3, 2, 1), then {2,3}\{2, 3\} is a disentaglement of σ\sigma. Let f(σ)f(\sigma) denote the minimum number kk such that there is a disentanglement of σ\sigma of length kk. Let g(n)g(n) be the expected value for f(σ)f(\sigma) if σ\sigma is a random permutation of {1,...,n}\{1, ... , n\}. What is g(6)g(6)?