MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
BMT Problems
2015 BMT Spring
19
2015 BMT Team 19
2015 BMT Team 19
Source:
January 6, 2022
floor function
algebra
Problem Statement
Two sequences
(
x
n
)
n
∈
N
(x_n)_{n\in N}
(
x
n
)
n
∈
N
and
(
y
n
)
n
∈
N
(y_n)_{n\in N}
(
y
n
)
n
∈
N
are defined recursively as follows:
x
0
=
2015
x_0 = 2015
x
0
=
2015
and
x
n
+
1
=
⌊
x
n
⋅
y
n
+
1
y
n
−
1
⌋
x_{n+1} =\left \lfloor x_n \cdot \frac{y_{n+1}}{y_{n-1}} \right \rfloor
x
n
+
1
=
⌊
x
n
⋅
y
n
−
1
y
n
+
1
⌋
for all
n
≥
0
n \ge 0
n
≥
0
,
y
0
=
307
y_0 = 307
y
0
=
307
and
y
n
+
1
=
y
n
+
1
y_{n+1} = y_n + 1
y
n
+
1
=
y
n
+
1
for all
n
≥
0
n \ge 0
n
≥
0
.Compute
lim
n
→
∞
x
n
(
y
n
)
2
\lim_{n\to \infty} \frac{x_n}{(y_n)^2}
lim
n
→
∞
(
y
n
)
2
x
n
.
Back to Problems
View on AoPS