MathDB
Logarithmic inequalities

Source:

September 28, 2010
inequalitieslogarithmscalculusIMO ShortlistIMO Longlist

Problem Statement

Let nn be a positive integer, prove that :
(a) log10(n+1)>310n+log10n;\log_{10}(n + 1) > \frac{3}{10n} +\log_{10}n ;
(b) logn!>3n10(12+13++1n1). \log n! > \frac{3n}{10}\left( \frac 12+\frac 13 +\cdots +\frac 1n -1\right).