MathDB
(x^3+3x^2f(y))/(x+f(y))+(y^3+3y^2f(x))/(y+f(x))=(x+y)^3/f(x+y)

Source: Romanian District Olympiad 2022 - Grade 9 - Problem 1

March 27, 2022
Arithmetic Functionfunctional equationfunctionalgebra

Problem Statement

Let f:NNf:\mathbb{N}^*\rightarrow \mathbb{N}^* be a function such that x3+3x2f(y)x+f(y)+y3+3y2f(x)y+f(x)=(x+y)3f(x+y), ()x,yN.\frac{x^3+3x^2f(y)}{x+f(y)}+\frac{y^3+3y^2f(x)}{y+f(x)}=\frac{(x+y)^3}{f(x+y)},~(\forall)x,y\in\mathbb{N}^*. a)a) Prove that f(1)=1.f(1)=1. b)b) Find function f.f.