MathDB
Romania NMO 2023 Grade 12 P2

Source: Romania National Olympiad 2023

April 14, 2023
polynomialfieldfinite fieldssuperior algebra

Problem Statement

Let pp be a prime number, nn a natural number which is not divisible by pp, and K\mathbb{K} is a finite field, with char(K)=p,K=pn,1Kchar(K) = p, |K| = p^n, 1_{\mathbb{K}} unity element and 0^=0K.\widehat{0} = 0_{\mathbb{K}}. For every mNm \in \mathbb{N}^{*} we note m^=1K+1K++1Km times \widehat{m} = \underbrace{1_{\mathbb{K}} + 1_{\mathbb{K}} + \ldots + 1_{\mathbb{K}}}_{m \text{ times}} and define the polynomial
fm=k=0m(1)mk(mk)^XpkK[X]. f_m = \sum_{k = 0}^{m} (-1)^{m - k} \widehat{\binom{m}{k}} X^{p^k} \in \mathbb{K}[X].
a) Show that roots of f1f_1 are {k^k{0,1,2,,p1}} \left\{ \widehat{k} | k \in \{0,1,2, \ldots , p - 1 \} \right\}.
b) Let mN.m \in \mathbb{N}^{*}. Determine the set of roots from K\mathbb{K} of polynomial fm.f_{m}.