MathDB
Functional equation-We need pco!!!

Source: Iran TST 2012-First exam-2nd day-P5

April 24, 2012
functioninductionceiling functionbinomial coefficientsalgebra proposedalgebra

Problem Statement

The function f:R0R0f:\mathbb R^{\ge 0} \longrightarrow \mathbb R^{\ge 0} satisfies the following properties for all a,bR0a,b\in \mathbb R^{\ge 0}:
a) f(a)=0a=0f(a)=0 \Leftrightarrow a=0
b) f(ab)=f(a)f(b)f(ab)=f(a)f(b)
c) f(a+b)2max{f(a),f(b)}f(a+b)\le 2 \max \{f(a),f(b)\}.
Prove that for all a,bR0a,b\in \mathbb R^{\ge 0} we have f(a+b)f(a)+f(b)f(a+b)\le f(a)+f(b).
Proposed by Masoud Shafaei