MathDB
IMC 2001 Problem 11

Source: IMC 2001 Day 2 Problem 5

October 30, 2020
functionfunctional equation

Problem Statement

Prove that there is no function f:RRf: \mathbb{R} \rightarrow \mathbb{R} with f(0)>0f(0) >0, and such that f(x+y)f(x)+yf(f(x)) for all x,yR.f(x+y) \geq f(x) +yf(f(x)) \text{ for all } x,y \in \mathbb{R}.