MathDB
Romania National Olympiad 2011 - Grade XI - problem 4

Source:

April 19, 2011
linear algebralinear algebra unsolved

Problem Statement

Let A,BM2(C)A\, ,\, B\in\mathcal{M}_2(\mathbb{C}) so that : A2+B2=2ABA^2+B^2=2AB . a) Prove that : AB=BAAB=BA . b) Prove that : tr(A)=tr(B)\text{tr}\, (A)=\text{tr}\, (B) .