MathDB
B'M perp to A'C' - Iran NMO 2001 (Second Round) - Problem2

Source:

October 4, 2010
geometry proposedgeometry

Problem Statement

Let ABCABC be an acute triangle. We draw 33 triangles BAC,CAB,ABCB'AC,C'AB,A'BC on the sides of ΔABC\Delta ABC at the out sides such that: BAC=CBA=ABC=30   ,   BCA=CAB=ACB=60 \angle{B'AC}=\angle{C'BA}=\angle{A'BC}=30^{\circ} \ \ \ , \ \ \ \angle{B'CA}=\angle{C'AB}=\angle{A'CB}=60^{\circ} If MM is the midpoint of side BCBC, prove that BMB'M is perpendicular to ACA'C'.