Functions f(x)f(y) = y^a*f(x/2) + x^b*f(y/2)
Source: IMO Shortlist 1994, A4
August 10, 2008
functionalgebrafunctional equationIMO Shortlist
Problem Statement
Let denote the set of all real numbers and \mathbb{R}^\plus{} the subset of all positive ones. Let and be given elements in not necessarily distinct. Find all functions f: \mathbb{R}^\plus{} \mapsto \mathbb{R} such that
f(x)f(y) \equal{} y^{\alpha} f \left( \frac{x}{2} \right) \plus{} x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^\plus{}.