MathDB
1/(a^2b+16)+1/(b^2c+16)+1/(c^2a+16)>=1/8 if a,b,c>0, a+b+c=6$

Source: 2017 Saudi Arabia JBMO Training Tests 5

May 28, 2020
inequalitiesalgebra

Problem Statement

Let a,b,c>0a,b,c>0 and a+b+c=6a+b+c=6 . Prove that 1a2b+16+1b2c+16+1c2a+1618. \frac{1}{a^2b+16}+\frac{1}{b^2c+16}+\frac{1}{c^2a+16} \ge \frac{1}{8}.