MathDB
P28 [Combinatorics] - Turkish NMO 1st Round - 2005

Source:

November 10, 2013

Problem Statement

How many solutions does the equation a!=b!c!a ! = b ! c ! have where aa, bb, cc are integers greater than 11?
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 2<spanclass=latexbold>(C)</span> 6<spanclass=latexbold>(D)</span> 8<spanclass=latexbold>(E)</span> Infinitely many <span class='latex-bold'>(A)</span>\ 1 \qquad<span class='latex-bold'>(B)</span>\ 2 \qquad<span class='latex-bold'>(C)</span>\ 6 \qquad<span class='latex-bold'>(D)</span>\ 8 \qquad<span class='latex-bold'>(E)</span>\ \text{Infinitely many}