MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2019 Romania Team Selection Test
1
Minimum of sum of n variables under constraint
Minimum of sum of n variables under constraint
Source: Romanian TST for 2019 IMO
October 1, 2019
inequalities
minimum
algebra
Problem Statement
Let be a natural number
n
≥
3.
n\ge 3.
n
≥
3.
Find
inf
1
=
P
(
x
1
,
x
2
,
…
,
x
n
)
x
1
,
x
2
,
…
,
x
n
∈
R
>
0
∑
i
=
1
n
(
1
x
i
−
x
i
)
,
\inf_{\stackrel{ x_1,x_2,\ldots ,x_n\in\mathbb{R}_{>0}}{1=P\left( x_1,x_2,\ldots ,x_n\right)}}\sum_{i=1}^n\left( \frac{1}{x_i} -x_i \right) ,
1
=
P
(
x
1
,
x
2
,
…
,
x
n
)
x
1
,
x
2
,
…
,
x
n
∈
R
>
0
in
f
i
=
1
∑
n
(
x
i
1
−
x
i
)
,
where
P
(
x
1
,
x
2
,
…
,
x
n
)
:
=
∑
i
=
1
n
1
x
i
+
n
−
1
,
P\left( x_1,x_2,\ldots ,x_n\right) :=\sum_{i=1}^n \frac{1}{x_i+n-1} ,
P
(
x
1
,
x
2
,
…
,
x
n
)
:=
∑
i
=
1
n
x
i
+
n
−
1
1
,
and find in which circumstances this infimum is attained.
Back to Problems
View on AoPS