MathDB
T(n,a_1,a_2,...,a_{15}) = (a_1^n+a_2^n+ ...+a_{15}^n)a_1a_2...a_{15}

Source: Israel Grosman Memorial Mathematical Olympiad 1999 p1

February 15, 2020
divisiblenumber theory

Problem Statement

For any 1616 positive integers n,a1,a2,...,a15n,a_1,a_2,...,a_{15} we define T(n,a1,a2,...,a15)=(a1n+a2n+...+a15n)a1a2...a15T(n,a_1,a_2,...,a_{15}) = (a_1^n+a_2^n+ ...+a_{15}^n)a_1a_2...a_{15}. Find the smallest nn such that T(n,a1,a2,...,a15)T(n,a_1,a_2,...,a_{15}) is divisible by 1515 for any choice of a1,a2,...,a15a_1,a_2,...,a_{15}.