MathDB
The inequality of the ranks

Source: Romanian MO 2004, Final Round, 11th Grade, Problem 2

February 28, 2006
inequalitiesfloor functionlinear algebralinear algebra unsolved

Problem Statement

Let nNn \in \mathbb N, n2n \geq 2. (a) Give an example of two matrices A,BMn(C)A,B \in \mathcal M_n \left( \mathbb C \right) such that rank(AB)rank(BA)=n2. \textrm{rank} \left( AB \right) - \textrm{rank} \left( BA \right) = \left\lfloor \frac{n}{2} \right\rfloor . (b) Prove that for all matrices X,YMn(C)X,Y \in \mathcal M_n \left( \mathbb C \right) we have rank(XY)rank(YX)n2. \textrm{rank} \left( XY \right) - \textrm{rank} \left( YX \right) \leq \left\lfloor \frac{n}{2} \right\rfloor . Ion Savu