MathDB
BMO Shortlist 2016

Source: Romania

May 3, 2019
inequalitiesnumber theory

Problem Statement

Find all integers n2n\geq 2 for which there exist the real numbers ak,1kna_k, 1\leq k \leq n, which are satisfying the following conditions: k=1nak=0,k=1nak2=1 and n(k=1nak3)=2(bn1), where b=max1kn{ak}.\sum_{k=1}^n a_k=0, \sum_{k=1}^n a_k^2=1 \text{ and } \sqrt{n}\cdot \Bigr(\sum_{k=1}^n a_k^3\Bigr)=2(b\sqrt{n}-1), \text{ where } b=\max_{1\leq k\leq n} \{a_k\}.