MathDB
There exists exactly one alpha - [Canadian Repêchage 2011]

Source:

January 15, 2011
geometrytrapezoidtrigonometrygeometry proposed

Problem Statement

In the diagram, ABDFABDF is a trapezoid with AFAF parallel to BDBD and ABAB perpendicular to BD.BD. The circle with center BB and radius ABAB meets BDBD at CC and is tangent to DFDF at E.E. Suppose that xx is equal to the area of the region inside quadrilateral ABEFABEF but outside the circle, that y is equal to the area of the region inside EBD\triangle EBD but outside the circle, and that α=EBC.\alpha = \angle EBC. Prove that there is exactly one measure α,\alpha, with 0α90,0^\circ \leq \alpha \leq 90^\circ, for which x=yx = y and that this value of 12<sinα<12.\frac 12 < \sin \alpha < \frac{1}{\sqrt 2}.
[asy] import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen fftttt = rgb(1,0.2,0.2); draw(circle((6.04,2.8),1.78),qqttff); draw((6.02,4.58)--(6.04,2.8),fftttt); draw((6.02,4.58)--(6.98,4.56),fftttt); draw((6.04,2.8)--(8.13,2.88),fftttt); draw((6.98,4.56)--(8.13,2.88),fftttt); dot((6.04,2.8),ds); label("BB", (5.74,2.46), NE*lsf); dot((6.02,4.58),ds); label("AA", (5.88,4.7), NE*lsf); dot((6.98,4.56),ds); label("FF", (7.06,4.6), NE*lsf); dot((7.39,3.96),ds); label("EE", (7.6,3.88), NE*lsf); dot((8.13,2.88),ds); label("DD", (8.34,2.56), NE*lsf); dot((7.82,2.86),ds); label("CC", (7.5,2.46), NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle); [/asy]