There exists exactly one alpha - [Canadian Repêchage 2011]
Source:
January 15, 2011
geometrytrapezoidtrigonometrygeometry proposed
Problem Statement
In the diagram, is a trapezoid with parallel to and perpendicular to The circle with center and radius meets at and is tangent to at Suppose that is equal to the area of the region inside quadrilateral but outside the circle, that y is equal to the area of the region inside but outside the circle, and that Prove that there is exactly one measure with for which and that this value of [asy]
import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen fftttt = rgb(1,0.2,0.2);
draw(circle((6.04,2.8),1.78),qqttff); draw((6.02,4.58)--(6.04,2.8),fftttt); draw((6.02,4.58)--(6.98,4.56),fftttt); draw((6.04,2.8)--(8.13,2.88),fftttt); draw((6.98,4.56)--(8.13,2.88),fftttt);
dot((6.04,2.8),ds); label("", (5.74,2.46), NE*lsf); dot((6.02,4.58),ds); label("", (5.88,4.7), NE*lsf); dot((6.98,4.56),ds); label("", (7.06,4.6), NE*lsf); dot((7.39,3.96),ds); label("", (7.6,3.88), NE*lsf); dot((8.13,2.88),ds); label("", (8.34,2.56), NE*lsf); dot((7.82,2.86),ds); label("", (7.5,2.46), NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle);
[/asy]