MathDB
Langrange function extremals and PDE system

Source: Schweitzer 2009

November 13, 2009
functionGausstopologyadvanced fieldsadvanced fields unsolveddifferential geometry

Problem Statement

Let URn U\subset\mathbb R^n be an open set, and let L:U×RnR L: U\times\mathbb R^n\to\mathbb R be a continuous, in its second variable first order positive homogeneous, positive over U×(Rn{0}) U\times (\mathbb R^n\setminus\{0\}) and of C2 C^2-class Langrange function, such that for all pU p\in U the Gauss-curvature of the hyper surface \{ v\in\mathbb R^n \mid L(p,v) \equal{} 1 \} is nowhere zero. Determine the extremals of L L if it satisfies the following system \sum_{k \equal{} 1}^n y^k\partial_k\partial_{n \plus{} i}L \equal{} \sum_{k \equal{} 1}^n y^k\partial_i\partial_{n \plus{} k} L \qquad (i\in\{1,\dots,n\}) of partial differetial equations, where y^k(u,v) : \equal{} v^k for (u,v)U×Rk (u,v)\in U\times\mathbb R^k, v \equal{} (v^1,\dots,v^k).