MathDB
Which One is True?

Source: 1966 AHSME #31 (mods - needs diagram)

August 31, 2011
geometryincenterangle bisectorAMC

Problem Statement

Triangle ABCABC is inscribed in a circle with center OO'. A circle with center OO is inscribed in triangle ABCABC. AOAO is drawn, and extended to intersect the larger circle in DD. Then, we must have:
(A) CD=BD=OD(B) AO=CO=OD(C) CD=CO=BD(D) CD=OD=BD(E) OB=OC=OD\text{(A)}\ CD=BD=O'D \qquad \text{(B)}\ AO=CO=OD \qquad \text{(C)}\ CD=CO=BD \qquad\\ \text{(D)}\ CD=OD=BD \qquad \text{(E)}\ O'B=O'C=OD
[asy] size(200); defaultpen(linewidth(0.8)+fontsize(12pt)); pair A=origin,B=(15,0),C=(5,9),O=incenter(A,B,C),Op=circumcenter(A,B,C); path incirc = incircle(A,B,C),circumcirc = circumcircle(A,B,C),line=A--3*O; pair D[]=intersectionpoints(circumcirc,line); draw(A--B--C--A--D[0]^^incirc^^circumcirc); dot(O^^Op,linewidth(4)); label("AA",A,dir(185)); label("BB",B,dir(355)); label("CC",C,dir(95)); label("DD",D[0],dir(O--D[0])); label("OO",O,NW); label("OO'",Op,E);[/asy]