MathDB
Invert Your Expectations

Source: USAMO 2022/3

March 24, 2022
AMCUSA(J)MOUSAMOalgebra

Problem Statement

Let R>0\mathbb{R}_{>0} be the set of all positive real numbers. Find all functions f:R>0R>0f:\mathbb{R}_{>0} \to \mathbb{R}_{>0} such that for all x,yR>0x,y\in \mathbb{R}_{>0} we have f(x)=f(f(f(x))+y)+f(xf(y))f(x+y).f(x) = f(f(f(x)) + y) + f(xf(y)) f(x+y).