MathDB
2002 I #5: Level 2

Source: 2024 AIME II Problem 15

February 8, 2024
AMCAIMEAIME IIgeometryrectangle

Problem Statement

Find the number of rectangles that can be formed inside a fixed regular dodecagon (1212-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.
[asy] unitsize(40); real r = pi/6; pair A1 = (cos(r),sin(r)); pair A2 = (cos(2r),sin(2r)); pair A3 = (cos(3r),sin(3r)); pair A4 = (cos(4r),sin(4r)); pair A5 = (cos(5r),sin(5r)); pair A6 = (cos(6r),sin(6r)); pair A7 = (cos(7r),sin(7r)); pair A8 = (cos(8r),sin(8r)); pair A9 = (cos(9r),sin(9r)); pair A10 = (cos(10r),sin(10r)); pair A11 = (cos(11r),sin(11r)); pair A12 = (cos(12r),sin(12r)); draw(A1--A2--A3--A4--A5--A6--A7--A8--A9--A10--A11--A12--cycle); filldraw(A2--A1--A8--A7--cycle, mediumgray, linewidth(1.2)); draw(A4--A11); draw(0.365*A3--0.365*A12, linewidth(1.2)); dot(A1); dot(A2); dot(A3); dot(A4); dot(A5); dot(A6); dot(A7); dot(A8); dot(A9); dot(A10); dot(A11); dot(A12); [/asy]