MathDB
Equilateral Triangle Tangency Points

Source: AIME 2009II Problem 5

April 2, 2009
trigonometrygeometrycircumcircleLaTeXanalytic geometrynumber theoryrelatively prime

Problem Statement

Equilateral triangle T T is inscribed in circle A A, which has radius 10 10. Circle B B with radius 3 3 is internally tangent to circle A A at one vertex of T T. Circles C C and D D, both with radius 2 2, are internally tangent to circle A A at the other two vertices of T T. Circles B B, C C, and D D are all externally tangent to circle E E, which has radius mn \frac {m}{n}, where m m and n n are relatively prime positive integers. Find m \plus{} n. [asy]unitsize(2.2mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;
pair A=(0,0), D=8*dir(330), C=8*dir(210), B=7*dir(90); pair Ep=(0,4-27/5); pair[] dotted={A,B,C,D,Ep};
draw(Circle(A,10)); draw(Circle(B,3)); draw(Circle(C,2)); draw(Circle(D,2)); draw(Circle(Ep,27/5));
dot(dotted); label("EE",Ep,E); label("AA",A,W); label("BB",B,W); label("CC",C,W); label("DD",D,E);[/asy]